ACID CATALYZED INTRAMOLECULAR CONJUGATE ADDITION AS A ROUTE TO trans HYDRINDANE SYSTEMS Gilbert Stork and Karnail S Atwal Department of Chemistry Columbia University New York, NY 10027 Abstract A stereocontrolled acid catalyzed intramolecular conjugate addition and its application in the enantioselective synthesis of trans hydrindanes are described In this communication we wish to report an acid catalyzed stereocontrolled cyclization² $(\underline{1} \rightarrow \underline{2})$ which might be applicable in the construction of chiral precursors for steroid synthesis The starting material for these studies was the readily available cis-3-methyl-4-carboxy-cyclohexene ($\underline{3}$) 3 The ester was reduced with LiAlH₄ and the resulting alcohol $\underline{4}$ was transformed to the enone $\underline{1}$ by a three step sequence—Ozonolysis (CH₂Cl₂, -78°C, Me₂S workup) of the olefin $\underline{4}$ gave the lactol $\underline{5}$ which was treated with (C₆H₅)₃P=CHCOCH₃ (benzene, r t) to afford the enone $\underline{6}$ Compound $\underline{6}$ on stirring with methanol (CH₂Cl₂, Py⁺Ts, r t) furnished the enone $\underline{1}^5$ in 51% yield from ester $\underline{3}$. On treatment with catalytic TsOH in $\mathrm{CH_2Cl_2}$, enone $\underline{1}$ was converted to the bicyclic product $\underline{2}$ in 70% yield. The fact that the cyclization leading to $\underline{2}$ was very stereoselective with respect to the newly formed carbon-carbon bond was proved by its hydrolysis (aq acetone, HCl) to lactol $\underline{7}$ followed by oxidation (PCC, $\mathrm{CH_2Cl_2}$) to the lactone $\underline{8}^6$ (72% overall yield), IR (CHCl₃) 1760, 1720 cm⁻¹, NMR (CDCl₃) δ 2 17, 2 16 (singlets, 3H), 1 32, 1 18 (singlets, 3H, ratio 1 10) The proof that the major isomer corresponds to structure 2 follows from its conversion to $$3 R = COOMe$$ $4 R = CH2OH$ $$5 R = 0, R^1 = R^2 = H$$ $$\underline{\underline{3}}$$ R = COOMe $\underline{\underline{4}}$ R = CH₂OH $\underline{\underline{6}}$ R = CHCOMe, R¹ = R² = H $\underline{\underline{16}}$ R = COOMenthyl $\underline{\underline{1}}$ R = CHCOMe, R¹ = Me, R² = H $\frac{2}{7} R^1 = Me, R^2 = H$ $\frac{7}{7} R^1 = R^2 = H$ 8 $$R^1$$ R^2 $\underline{10} R^1 = H, R^2, = OCOMe$ $11 R^1 H, R^2 = OCOMe$ $\frac{-1}{12}$ R¹ = H, R² = OH $\frac{13}{13}$ R¹ = H, R² = SePh(o-NO₂) 14 R = CH₂ 15 R = 0 $17 R^1 = H, R^2 = CH_2OH$ the known trans hydrindanone derivative $\underline{15}$. ^2a The lactol $\underline{7}$ on heating with KOH in aqueous methanol gave the tricyclic product $\underline{9}$ (60% from $\underline{2}$, two epimers by V P C, $\underline{4}$ ratio 1 10). Compound $\underline{9}$ was transformed into the enone $\underline{10}$ (72%) by heating with acetic anhydride and TsOH in benzene Catalytic hydrogenation (EtOAc, Pd-C) of $\underline{10}$ and saponification of the resulting acetate $\underline{11}$ provided the alcohol $\underline{12}$ (88%) which on oxidative elimination $\underline{7}$ of the corresponding selenide $\underline{13}$ 8 provided the olefin $\underline{14}$ (40% from $\underline{12}$) Ozonolysis (CH₂Cl₂, Me₂S workup) of $\underline{14}$ gave the trans diketone $\underline{15}$ ^{2a} as the major product $\underline{9}$ The predominance of the desired anti relationship of the angular methyl and hydrogen at the newly formed carbon-carbon bond in $\underline{2}$ can be rationalized by considering the transition states \underline{A} and \underline{B} 10 The steric congestion in transition state \underline{B} leading to cis isomer of $\underline{15}^{11}$ makes it less favorable than the alternative transition state \underline{A} which favors the trans ring junction. With the assumption that cyclization $\underline{1} \to \underline{2}$ will proceed without loss of optical activity, we decided to prepare the key intermediate $\underline{1}$ in optically active form. Diels Alder reaction of trans piperylene and R(-)menthyl acrylate (CH₂Cl₂, EtAlCl₂, -20°C) provided the ester $\underline{16}^{13}$ (70%) in 43% optical yield. The transformation of compound $\underline{16}$ into the alcohol $\underline{12}$ proceeded as described for $\underline{3} \to \underline{12}$ Compound $\underline{12}$ had in fact been formed from $\underline{16}$ without loss of optical activity Making use of the chiral acrylate derived from (-)- β -pinene¹⁶ the optical yield of compound $\underline{1}$ could be improved to 55-60% In conclusion, we have shown that the acid catalyzed intramolecular conjugate addition of systems such as $\underline{1}$ can be used to prepare optically pure 17 intermediates with controlled stereochemistry. Compounds such as $\underline{10}$ can serve as valuable intermediates in the synthesis of chiral steriods. 18 Acknowledgement We wish to thank the National Institutes of Health and the National Science Foundation for the financial support. ## References and Notes - 1 Address correspondence to this author at The Squibb Institute for Medical Research, P O Box 4000, Princeton, NJ 08540 - 2 For related base catalyzed cyclizations see (a) Stork, G, Shiner, CS, Winkler, JD J Am. Chem Soc 1982, 104, 310, (b) Stork, G, Atwal, K, Tet Lett 1982, 2073, Stork, G, Winkler, JD, Saccomano, NS Tet Lett 1983, 465 - 3 Inukai, T, Kojima, T J J. Org Chem., 1967, 32, 869. EtAlCl₂ in CH₂Cl₂ gives better yield (58% to alcohol 4) with 94% endo selectivity 3 - 4. V P C. analysis was performed on SE-30 fused silica glass capillary column (25m x 0 24mm) using Packard Gas Chromatography Model 433. - 5. The structure of compound <u>1</u> was proved by its hydrolysis (aq. acetone, HC1) followed by oxidation (PCC, CH₂Cl₂) of lactol <u>6</u> to the five-membered lactone which absorbs at 1747 cm⁻¹ in I.R - 6 V P C analysis 4 shows it to be a mixture, ratio 1 10, minor isomer elutes faster - 7 Sharpless, K. B., Young, M W J. Org. Chem., 1975, 40, 947 - 8. Grieco, P , Gilman, S , Nishizawa, M. J Org Chem , 1976, 41, 1485. - 9. The minor product (0.4% at this stage) shows the same retention time 3 as an authentic sample of cis-isomer 2a - 10 The evidence for the intermediacy of \underline{A} and \underline{B} is circumstantial at this stage. The cyclization $(\underline{1} \rightarrow \underline{2})$ was unsuccessful in MeOH. The unstable intermediate $(\underline{A},\underline{B})$, prepared by dehydration (MsCl/pyridine) of $\underline{6}$, refused to cyclize cleanly. Additionally, if the ketoaldehyde $\underline{17}$ (open form of $\underline{1}$) is an intermediate (which could have been trapped with MeOH under acid catalysis) one would not expect high stereoselectivity during cyclization [1] - It is possible that cis product was formed from the open form ($\underline{17}$) of $\underline{1}$ as acid catalyzed cyclization of such systems shows very little stereoselectivity. Small amount (\sim 5%) of a byproduct $\underline{18}$ originating from $\underline{17}$ was actually isolated - 12 Unpublished results from these laboratories - 13 94% endo by V.P C analysis 4 of alcohol 4 - 14 The optical purity of compound $\underline{16}$ (and $\underline{12}$) was determined by preparing the Mosher ester 15 of alcohol 4 (and 12) - 15 Dale, J A , Dull, D L., Mosher, H. S J Org. Chem, 1969, 34, 2543 - 16. Oppolzer, W et al Helv Chim. Acta, 1981, 64, 2802 - 17. Chiral cis-3-methyl-4-carboxy-1-cyclohexene (3, R = COOH) of course can be made by optical resolution of the (±) adduct: Monroe, J. D., Ph.D., thesis, Yale University, 1974 Since the sequence 4 + 12 proceeds without loss of optical activity, one can therefore obtain compound 10 in optically pure form. - 18 Stork, G , Winkler, J. D , Shiner, C S J. Am Chem Soc 1982, 104, 3767 (Received in USA 3 June 1983)