## ACID CATALYZED INTRAMOLECULAR CONJUGATE ADDITION AS A ROUTE TO trans HYDRINDANE SYSTEMS

Gilbert Stork and Karnail S Atwal

Department of Chemistry

Columbia University

New York, NY 10027

Abstract A stereocontrolled acid catalyzed intramolecular conjugate addition and its application in the enantioselective synthesis of trans hydrindanes are described

In this communication we wish to report an acid catalyzed stereocontrolled cyclization<sup>2</sup>  $(\underline{1} \rightarrow \underline{2})$  which might be applicable in the construction of chiral precursors for steroid synthesis

The starting material for these studies was the readily available cis-3-methyl-4-carboxy-cyclohexene ( $\underline{3}$ ) 3 The ester was reduced with LiAlH<sub>4</sub> and the resulting alcohol  $\underline{4}$  was transformed to the enone  $\underline{1}$  by a three step sequence—Ozonolysis (CH<sub>2</sub>Cl<sub>2</sub>, -78°C, Me<sub>2</sub>S workup) of the olefin  $\underline{4}$  gave the lactol  $\underline{5}$  which was treated with (C<sub>6</sub>H<sub>5</sub>)<sub>3</sub>P=CHCOCH<sub>3</sub> (benzene, r t ) to afford the enone  $\underline{6}$  Compound  $\underline{6}$  on stirring with methanol (CH<sub>2</sub>Cl<sub>2</sub>, Py<sup>+</sup>Ts, r t ) furnished the enone  $\underline{1}^5$  in 51% yield from ester  $\underline{3}$ .

On treatment with catalytic TsOH in  $\mathrm{CH_2Cl_2}$ , enone  $\underline{1}$  was converted to the bicyclic product  $\underline{2}$  in 70% yield. The fact that the cyclization leading to  $\underline{2}$  was very stereoselective with respect to the newly formed carbon-carbon bond was proved by its hydrolysis (aq acetone, HCl) to lactol  $\underline{7}$  followed by oxidation (PCC,  $\mathrm{CH_2Cl_2}$ ) to the lactone  $\underline{8}^6$  (72% overall yield), IR (CHCl<sub>3</sub>) 1760, 1720 cm<sup>-1</sup>, NMR (CDCl<sub>3</sub>)  $\delta$  2 17, 2 16 (singlets, 3H), 1 32, 1 18 (singlets, 3H, ratio 1 10)

The proof that the major isomer corresponds to structure 2 follows from its conversion to

$$3 R = COOMe$$
  
 $4 R = CH2OH$ 

$$5 R = 0, R^1 = R^2 = H$$

$$\underline{\underline{3}}$$
 R = COOMe  
 $\underline{\underline{4}}$  R = CH<sub>2</sub>OH  $\underline{\underline{6}}$  R = CHCOMe, R<sup>1</sup> = R<sup>2</sup> = H  
 $\underline{\underline{16}}$  R = COOMenthyl  $\underline{\underline{1}}$  R = CHCOMe, R<sup>1</sup> = Me, R<sup>2</sup> = H

 $\frac{2}{7} R^1 = Me, R^2 = H$  $\frac{7}{7} R^1 = R^2 = H$ 

8



$$R^1$$
 $R^2$ 

 $\underline{10} R^1 = H, R^2, = OCOMe$ 

 $11 R^1 H, R^2 = OCOMe$ 

 $\frac{-1}{12}$  R<sup>1</sup> = H, R<sup>2</sup> = OH  $\frac{13}{13}$  R<sup>1</sup> = H, R<sup>2</sup> = SePh(o-NO<sub>2</sub>)

14 R = CH<sub>2</sub> 15 R = 0

 $17 R^1 = H, R^2 = CH_2OH$ 

the known trans hydrindanone derivative  $\underline{15}$ . ^2a The lactol  $\underline{7}$  on heating with KOH in aqueous methanol gave the tricyclic product  $\underline{9}$  (60% from  $\underline{2}$ , two epimers by V P C,  $\underline{4}$  ratio 1 10). Compound  $\underline{9}$  was transformed into the enone  $\underline{10}$  (72%) by heating with acetic anhydride and TsOH in benzene Catalytic hydrogenation (EtOAc, Pd-C) of  $\underline{10}$  and saponification of the resulting acetate  $\underline{11}$  provided the alcohol  $\underline{12}$  (88%) which on oxidative elimination  $\underline{7}$  of the corresponding selenide  $\underline{13}$ 8 provided the olefin  $\underline{14}$  (40% from  $\underline{12}$ ) Ozonolysis (CH<sub>2</sub>Cl<sub>2</sub>, Me<sub>2</sub>S workup) of  $\underline{14}$  gave the trans diketone  $\underline{15}$ <sup>2a</sup> as the major product  $\underline{9}$ 

The predominance of the desired anti relationship of the angular methyl and hydrogen at the newly formed carbon-carbon bond in  $\underline{2}$  can be rationalized by considering the transition states  $\underline{A}$  and  $\underline{B}$  10

The steric congestion in transition state  $\underline{B}$  leading to cis isomer of  $\underline{15}^{11}$  makes it less favorable than the alternative transition state  $\underline{A}$  which favors the trans ring junction.

With the assumption that cyclization  $\underline{1} \to \underline{2}$  will proceed without loss of optical activity, we decided to prepare the key intermediate  $\underline{1}$  in optically active form. Diels Alder reaction of trans piperylene and R(-)menthyl acrylate (CH<sub>2</sub>Cl<sub>2</sub>, EtAlCl<sub>2</sub>, -20°C) provided the ester  $\underline{16}^{13}$  (70%) in 43% optical yield. The transformation of compound  $\underline{16}$  into the alcohol  $\underline{12}$  proceeded as described for  $\underline{3} \to \underline{12}$  Compound  $\underline{12}$  had in fact been formed from  $\underline{16}$  without loss of optical activity Making use of the chiral acrylate derived from (-)- $\beta$ -pinene<sup>16</sup> the optical yield of compound  $\underline{1}$  could be improved to 55-60%

In conclusion, we have shown that the acid catalyzed intramolecular conjugate addition of systems such as  $\underline{1}$  can be used to prepare optically pure  $^{17}$  intermediates with controlled stereochemistry. Compounds such as  $\underline{10}$  can serve as valuable intermediates in the synthesis of chiral steriods.  $^{18}$ 

Acknowledgement We wish to thank the National Institutes of Health and the National Science Foundation for the financial support.

## References and Notes

- 1 Address correspondence to this author at The Squibb Institute for Medical Research, P O Box 4000, Princeton, NJ 08540
- 2 For related base catalyzed cyclizations see (a) Stork, G, Shiner, CS, Winkler, JD J Am. Chem Soc 1982, 104, 310, (b) Stork, G, Atwal, K, Tet Lett 1982, 2073, Stork, G, Winkler, JD, Saccomano, NS Tet Lett 1983, 465

- 3 Inukai, T, Kojima, T J J. Org Chem., 1967, 32, 869. EtAlCl<sub>2</sub> in CH<sub>2</sub>Cl<sub>2</sub> gives better yield (58% to alcohol 4) with 94% endo selectivity 3
- 4. V P C. analysis was performed on SE-30 fused silica glass capillary column (25m x 0 24mm) using Packard Gas Chromatography Model 433.
- 5. The structure of compound <u>1</u> was proved by its hydrolysis (aq. acetone, HC1) followed by oxidation (PCC, CH<sub>2</sub>Cl<sub>2</sub>) of lactol <u>6</u> to the five-membered lactone which absorbs at 1747 cm<sup>-1</sup> in I.R
- 6 V P C analysis 4 shows it to be a mixture, ratio 1 10, minor isomer elutes faster
- 7 Sharpless, K. B., Young, M W J. Org. Chem., 1975, 40, 947
- 8. Grieco, P , Gilman, S , Nishizawa, M. J Org Chem , 1976, 41, 1485.
- 9. The minor product (0.4% at this stage) shows the same retention time  $^3$  as an authentic sample of cis-isomer  $^{2a}$
- 10 The evidence for the intermediacy of  $\underline{A}$  and  $\underline{B}$  is circumstantial at this stage. The cyclization  $(\underline{1} \rightarrow \underline{2})$  was unsuccessful in MeOH. The unstable intermediate  $(\underline{A},\underline{B})$ , prepared by dehydration (MsCl/pyridine) of  $\underline{6}$ , refused to cyclize cleanly. Additionally, if the ketoaldehyde  $\underline{17}$  (open form of  $\underline{1}$ ) is an intermediate (which could have been trapped with MeOH under acid catalysis) one would not expect high stereoselectivity during cyclization [1]
- It is possible that cis product was formed from the open form ( $\underline{17}$ ) of  $\underline{1}$  as acid catalyzed cyclization of such systems shows very little stereoselectivity. Small amount ( $\sim$ 5%) of a byproduct  $\underline{18}$  originating from  $\underline{17}$  was actually isolated
- 12 Unpublished results from these laboratories
- 13 94% endo by V.P C analysis 4 of alcohol 4
- 14 The optical purity of compound  $\underline{16}$  (and  $\underline{12}$ ) was determined by preparing the Mosher ester  $^{15}$  of alcohol 4 (and 12)
- 15 Dale, J A , Dull, D L., Mosher, H. S J Org. Chem, 1969, 34, 2543
- 16. Oppolzer, W et al Helv Chim. Acta, 1981, 64, 2802
- 17. Chiral cis-3-methyl-4-carboxy-1-cyclohexene (3, R = COOH) of course can be made by optical resolution of the (±) adduct: Monroe, J. D., Ph.D., thesis, Yale University, 1974 Since the sequence 4 + 12 proceeds without loss of optical activity, one can therefore obtain compound 10 in optically pure form.
- 18 Stork, G , Winkler, J. D , Shiner, C S J. Am Chem Soc 1982, 104, 3767 (Received in USA 3 June 1983)